$\gamma = 81.21 \ (3)^{\circ}$

Z = 2

V = 1270.3 (4) Å³

Mo $K\alpha$ radiation

 $0.33 \times 0.21 \times 0.03 \text{ mm}$

25287 measured reflections

5262 independent reflections

4944 reflections with $I > 2\sigma(I)$

 $\mu = 1.22 \text{ mm}^{-1}$

T = 173 K

 $R_{\rm int} = 0.073$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2,2'-Bipyridyl)bis[N,N-bis(2-hydroxyethyl)dithiocarbamato- $\kappa^2 S,S'$]cadmium(II)

Juyoung C. Song^a and Edward R. T. Tiekink^{b*}

^aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: edward.tiekink@gmail.com

Received 19 November 2009; accepted 19 November 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.007 Å; R factor = 0.053; wR factor = 0.116; data-to-parameter ratio = 17.0.

The title compound, $[Cd(C_5H_{10}NO_2S_2)_2(C_{10}H_8N_2)]$, features a trigonal-prismatic coordination geometry for the Cd^{II} ion, based on an N₂S₄ donor set defined by two chelating dithiocarbamate ligands and a 2,2'-bipyridyl ligand. In the crystal, extensive O-H···O hydrogen bonding results in the formation of 12-membered {···HO}₆ synthons and one-dimensional supramolecular chains with further O-H···S interactions providing additional stability to the linear chain with base vector [011].

Related literature

For background to supramolecular polymers of zinc-triad 1,1dithiolates, see: Tiekink (2003); Lai *et al.* (2002); Chen *et al.* (2006); Benson *et al.* (2007). For the synthesis, see: Lai & Tiekink (2004). *Note added in proof*: a room temperature determination of the same structure has been reported by [Deng, Y.-H., Liu, J., Li, N., Yang, Y.-L. & Ma, H.-W. (2007). *Acta Chim. Sin.* **65**, 2868–2874].

Experimental

Crystal data

 $\begin{bmatrix} Cd(C_5H_{10}NO_2S_2)_2(C_{10}H_8N_2) \end{bmatrix} \\ M_r = 629.10 \\ \text{Triclinic, } P\overline{1} \\ a = 10.077 (2) \text{ Å} \\ b = 11.568 (2) \text{ Å} \\ c = 11.676 (2) \text{ Å} \\ \alpha = 70.85 (3)^{\circ} \\ \beta = 85.86 (3)^{\circ} \end{bmatrix}$

Data collection

Rigaku AFC12K/SATURN724 diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.836, T_{max} = 1$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	4 restraints
$vR(F^2) = 0.116$	H-atom parameters constrained
S = 1.13	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
5262 reflections	$\Delta \rho_{\rm min} = -0.98 \text{ e } \text{\AA}^{-3}$
310 parameters	

Table 1

Selected bond lengths (Å).

Cd-N4	2.361 (4)	Cd-S3	2.6310 (15)
Cd-N3	2.395 (4)	Cd-S4	2.7258 (15)
Cd-S1	2.6021 (14)	Cd-S2	2.7586 (13)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1-H10···S3 ⁱ	0.84	2.43	3.241 (4)	162
O2−H2o···O3 ⁱⁱ	0.84	1.89	2.723 (5)	176
O3-H30···O4	0.84	1.87	2.688 (5)	166
$O4-H40\cdots O2^i$	0.84	1.91	2.745 (5)	174

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x, y - 1, z + 1.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *PATTY* in *DIRDIF92* (Beurskens *et al.*, 1992); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5241).

References

- Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940.
- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System*. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Chen, D., Lai, C. S. & Tiekink, E. R. T. (2006). *CrystEngComm*, **8**, 51–58. Higashi, T. (1995). *ABSCOR*. Rigaku Corporation, Tokyo, Japan.

- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lai, C. S., Lim, Y. X., Yap, T. C. & Tiekink, E. R. T. (2002). CrystEngComm, 4, 596–600.
- Lai, C. S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 593-605.
- Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.
- Westrip, S. P. (2009). publCIF. In preparation.

Acta Cryst. (2009). E65, m1667-m1668 [doi:10.1107/S1600536809049678]

(2,2'-Bipyridyl)bis[N,N-bis(2-hydroxyethyl)dithiocarbamato- $\kappa^2 S$,S']cadmium(II)

J. C. Song and E. R. T. Tiekink

Comment

Interest in the title compound, (I), relates to crystal engineering endeavours with the zinc-triad 1,1-thiolates (Lai *et al.*, 2002; Tiekink, 2003; Chen *et al.*, 2006), in particular with functionalized dithiocarbamate ligands (Benson *et al.*, 2007). The cadmium atom in (I), Fig. 1, is chelated by two dithiocarbamate ligands that form asymmetric Cd–S bond distances (Cd–S1, S2 = 2.6021 (14) and 2.7586 (13) Å; and Cd–S3, S4 = 2.6310 (15) and 2.7258 (15) Å) and by the 2,2'-bipyridyl ligand (Cd–N3, N4 = 2.395 (4) and 2.361 (4) Å). The resulting N₂S₄ donor set defines a trigonal prismatic geometry.

The prominent feature of the crystal structure is the formation of a supramolecular chain with base vector $[0 \ 1 \ T]$. These form as a result of 12-membered {...OH}₆ synthons involving the O2-, O3-, and O4-hydroxyl groups; the O1-hydroxyl group forms a hydrogen bond to the S3 atom, Table 1 and Fig. 2. The 12-membered synthons have a flattened chair conformation.

Experimental

Compound (I) was prepared following the standard literature procedure from the reaction of $Cd[S_2CN(CH_2CH_2OH)_2]$ and 2,2'-bipyridyl (Lai & Tiekink, 2004). Colourless crystals were obtained from the slow evaporation of a chloroform/ethanol solution of (I).

Refinement

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with $U_{iso}(H)$ set to $1.2U_{eq}(C)$. The O-bound H-atoms were located in a difference Fourier map and refined with an O–H restraint of 0.840 ± 0.001 Å, and with $U_{iso}(H) = 1.5U_{eq}(\text{carrier atom})$.

Figures

Fig. 1. Molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Fig. 2. Supramolecular chain in (I) mediated by O–H…O (orange dashed lines) and O–H…S (blue dashed lines) hydrogen bonds. Colour code: Cd, orange; S, yellow; O, red; N, blue; C, grey; and H, green.

$(2,2'-Bipyridyl)bis[N,N-bis(2-hydroxyethyl)dithiocarbamato- \kappa^2 S,S']cadmium(II)$

Crystal data

$[Cd(C_5H_{10}NO_2S_2)_2(C_{10}H_8N_2)]$	Z = 2
$M_r = 629.10$	F(000) = 640
Triclinic, <i>P</i> 1	$D_{\rm x} = 1.645 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 10.077 (2) Å	Cell parameters from 887 reflections
<i>b</i> = 11.568 (2) Å	$\theta = 4.2 - 30.2^{\circ}$
c = 11.676 (2) Å	$\mu = 1.22 \text{ mm}^{-1}$
$\alpha = 70.85 \ (3)^{\circ}$	T = 173 K
$\beta = 85.86 \ (3)^{\circ}$	Plate, colourless
$\gamma = 81.21 \ (3)^{\circ}$	$0.33\times0.21\times0.03~mm$
$V = 1270.3 (4) \text{ Å}^3$	

Data collection

52 independent reflections
14 reflections with $I > 2\sigma(I)$
t = 0.073
$\theta_{\rm min} = 26.5^{\circ}, \theta_{\rm min} = 2.7^{\circ}$
-12→11
-14→14
−14→14
5 1 t

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.116$	H-atom parameters constrained
<i>S</i> = 1.13	$w = 1/[\sigma^2(F_o^2) + (0.0386P)^2 + 2.3559P]$ where $P = (F_o^2 + 2F_c^2)/3$
5262 reflections	$(\Delta/\sigma)_{max} < 0.001$
310 parameters	$\Delta \rho_{max} = 0.56 \text{ e} \text{ Å}^{-3}$
4 restraints	$\Delta \rho_{\rm min} = -0.98 \ e \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
Cd	0.36192 (3)	0.33563 (3)	0.34083 (3)	0.02981 (11)
S1	0.14908 (11)	0.27519 (11)	0.47403 (10)	0.0337 (3)
S2	0.35247 (11)	0.39052 (10)	0.55430 (10)	0.0328 (2)
S3	0.45303 (11)	0.53668 (10)	0.19791 (10)	0.0337 (3)
S4	0.23576 (12)	0.43012 (10)	0.12429 (11)	0.0371 (3)
01	-0.2255 (3)	0.2988 (3)	0.6889 (4)	0.0461 (9)
H1O	-0.2940	0.3442	0.7026	0.069*
02	0.1836 (3)	0.1573 (3)	0.9494 (3)	0.0422 (8)
H2O	0.2112	0.0879	0.9418	0.063*
O3	0.2605 (4)	0.9327 (3)	-0.0806 (4)	0.0497 (9)
H3O	0.1879	0.9048	-0.0783	0.075*
O4	0.0530 (3)	0.8094 (3)	-0.0739 (4)	0.0501 (9)
H4O	-0.0183	0.8255	-0.0369	0.075*
N1	0.1369 (4)	0.3121 (3)	0.6879 (3)	0.0312 (8)
N2	0.3187 (3)	0.6426 (3)	-0.0077 (3)	0.0276 (7)
N3	0.3929 (4)	0.1393 (3)	0.3082 (3)	0.0322 (8)
N4	0.5818 (3)	0.2321 (3)	0.3877 (3)	0.0290 (8)
C1	0.2059 (4)	0.3265 (4)	0.5824 (4)	0.0268 (9)
C2	0.0090 (4)	0.2611 (4)	0.7110 (4)	0.0339 (10)
H2A	-0.0030	0.2201	0.7993	0.041*
H2B	0.0120	0.1978	0.6704	0.041*
C3	-0.1091 (5)	0.3596 (4)	0.6657 (5)	0.0387 (11)
НЗА	-0.1168	0.4212	0.7088	0.046*
H3B	-0.0980	0.4026	0.5777	0.046*
C4	0.1797 (5)	0.3524 (4)	0.7844 (4)	0.0340 (10)
H4A	0.0991	0.3851	0.8236	0.041*
H4B	0.2337	0.4207	0.7476	0.041*
C5	0.2614 (5)	0.2511 (4)	0.8802 (4)	0.0385 (11)
H5A	0.3383	0.2135	0.8407	0.046*
H5B	0.2976	0.2873	0.9353	0.046*
C6	0.3334 (4)	0.5458 (4)	0.0943 (4)	0.0291 (9)
C7	0.4113 (5)	0.7363 (4)	-0.0404 (4)	0.0352 (10)
H7A	0.4274	0.7629	-0.1293	0.042*
H7B	0.4985	0.6979	-0.0017	0.042*
C8	0.3608 (5)	0.8490 (5)	-0.0033 (5)	0.0453 (12)
H8A	0.3233	0.8219	0.0805	0.054*
H8B	0.4376	0.8930	-0.0030	0.054*
C9	0.2229 (4)	0.6488 (4)	-0.1002 (4)	0.0319 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H9A	0.2328	0.5670	-0.1121	0.038*
H9B	0.2483	0.7091	-0.1779	0.038*
C10	0.0770 (5)	0.6847 (4)	-0.0721 (5)	0.0399 (11)
H10A	0.0204	0.6740	-0.1328	0.048*
H10B	0.0519	0.6300	0.0088	0.048*
C11	0.2929 (5)	0.0957 (4)	0.2737 (5)	0.0410 (11)
H11	0.2104	0.1484	0.2517	0.049*
C12	0.3044 (5)	-0.0226 (4)	0.2687 (5)	0.0403 (11)
H12	0.2317	-0.0508	0.2429	0.048*
C13	0.4236 (5)	-0.0994 (4)	0.3020 (4)	0.0388 (11)
H13	0.4337	-0.1820	0.3008	0.047*
C14	0.5278 (5)	-0.0556 (4)	0.3367 (4)	0.0340 (10)
H14	0.6109	-0.1073	0.3590	0.041*
C15	0.5105 (4)	0.0651 (4)	0.3389 (4)	0.0282 (9)
C16	0.6193 (4)	0.1216 (4)	0.3728 (4)	0.0281 (9)
C17	0.7516 (5)	0.0650 (4)	0.3846 (4)	0.0373 (10)
H17	0.7762	-0.0133	0.3735	0.045*
C18	0.8472 (5)	0.1252 (5)	0.4128 (5)	0.0432 (12)
H18	0.9387	0.0891	0.4204	0.052*
C19	0.8078 (5)	0.2377 (5)	0.4297 (4)	0.0399 (11)
H19	0.8717	0.2804	0.4493	0.048*
C20	0.6736 (4)	0.2881 (4)	0.4177 (4)	0.0341 (10)
H20	0.6461	0.3649	0.4314	0.041*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd	0.03000 (19)	0.02641 (18)	0.0318 (2)	-0.00260 (13)	0.00178 (13)	-0.00888 (13)
S1	0.0301 (5)	0.0409 (6)	0.0335 (6)	-0.0070 (5)	0.0009 (4)	-0.0160 (5)
S2	0.0312 (6)	0.0316 (5)	0.0372 (6)	-0.0072 (4)	0.0034 (5)	-0.0131 (5)
S3	0.0314 (6)	0.0342 (6)	0.0328 (6)	-0.0061 (4)	-0.0029 (5)	-0.0058 (5)
S4	0.0440 (7)	0.0296 (6)	0.0380 (6)	-0.0106 (5)	-0.0019 (5)	-0.0083 (5)
01	0.0312 (18)	0.043 (2)	0.069 (2)	-0.0080 (15)	0.0054 (17)	-0.0257 (18)
O2	0.0434 (19)	0.0361 (18)	0.045 (2)	-0.0040 (15)	0.0039 (15)	-0.0118 (15)
O3	0.043 (2)	0.0354 (19)	0.069 (3)	-0.0058 (16)	0.0006 (19)	-0.0153 (17)
O4	0.0344 (19)	0.0403 (19)	0.074 (3)	-0.0011 (16)	0.0071 (17)	-0.0205 (18)
N1	0.0284 (18)	0.0336 (19)	0.034 (2)	-0.0080 (15)	0.0035 (15)	-0.0128 (16)
N2	0.0259 (17)	0.0288 (18)	0.0280 (19)	-0.0032 (14)	0.0004 (14)	-0.0092 (14)
N3	0.0322 (19)	0.0258 (18)	0.040 (2)	-0.0037 (15)	-0.0014 (16)	-0.0123 (15)
N4	0.0297 (18)	0.0282 (18)	0.0288 (19)	-0.0033 (14)	-0.0009 (15)	-0.0089 (14)
C1	0.027 (2)	0.0211 (19)	0.031 (2)	-0.0010 (16)	0.0004 (17)	-0.0081 (16)
C2	0.029 (2)	0.034 (2)	0.039 (3)	-0.0073 (18)	0.0023 (19)	-0.0133 (19)
C3	0.035 (2)	0.036 (2)	0.050 (3)	-0.006 (2)	0.002 (2)	-0.021 (2)
C4	0.037 (2)	0.037 (2)	0.034 (2)	-0.0117 (19)	0.0075 (19)	-0.0178 (19)
C5	0.035 (2)	0.047 (3)	0.039 (3)	-0.012 (2)	0.001 (2)	-0.019 (2)
C6	0.028 (2)	0.029 (2)	0.028 (2)	0.0004 (17)	0.0043 (17)	-0.0089 (17)
C7	0.035 (2)	0.031 (2)	0.034 (2)	-0.0097 (19)	-0.0012 (19)	-0.0007 (18)
C8	0.055 (3)	0.038 (3)	0.046 (3)	-0.019 (2)	-0.004 (2)	-0.013 (2)

C9	0.031 (2)	0.035 (2)	0.029 (2)	-0.0030 (18)	-0.0013 (18)	-0.0101 (18)
C10	0.037 (3)	0.036 (2)	0.046 (3)	-0.005 (2)	-0.001 (2)	-0.012 (2)
C11	0.037 (3)	0.034 (2)	0.053 (3)	-0.002 (2)	-0.006 (2)	-0.016 (2)
C12	0.043 (3)	0.037 (3)	0.046 (3)	-0.012 (2)	-0.004 (2)	-0.016 (2)
C13	0.052 (3)	0.029 (2)	0.038 (3)	-0.010 (2)	0.002 (2)	-0.0115 (19)
C14	0.039 (2)	0.023 (2)	0.038 (3)	-0.0010 (18)	-0.002 (2)	-0.0077 (18)
C15	0.031 (2)	0.029 (2)	0.022 (2)	-0.0055 (17)	0.0039 (16)	-0.0052 (16)
C16	0.030 (2)	0.025 (2)	0.026 (2)	-0.0032 (16)	0.0003 (17)	-0.0048 (16)
C17	0.035 (2)	0.033 (2)	0.040 (3)	0.0007 (19)	-0.002 (2)	-0.008 (2)
C18	0.034 (2)	0.043 (3)	0.045 (3)	0.003 (2)	-0.011 (2)	-0.005 (2)
C19	0.036 (2)	0.051 (3)	0.036 (3)	-0.014 (2)	-0.007 (2)	-0.013 (2)
C20	0.035 (2)	0.040 (2)	0.031 (2)	-0.0076 (19)	0.0012 (18)	-0.0156 (19)

Geometric parameters (Å, °)

2.361 (4)	C4—C5	1.510 (6)
2.395 (4)	C4—H4A	0.9900
2.6021 (14)	C4—H4B	0.9900
2.6310 (15)	С5—Н5А	0.9900
2.7258 (15)	С5—Н5В	0.9900
2.7586 (13)	С7—С8	1.511 (7)
1.727 (4)	С7—Н7А	0.9900
1.715 (4)	С7—Н7В	0.9900
1.737 (4)	C8—H8A	0.9900
1.711 (5)	C8—H8B	0.9900
1.423 (6)	C9—C10	1.508 (6)
0.840	С9—Н9А	0.9900
1.428 (6)	С9—Н9В	0.9900
0.839	C10—H10A	0.9900
1.426 (6)	C10—H10B	0.9900
0.840	C11—C12	1.376 (6)
1.418 (6)	C11—H11	0.9500
0.839	C12—C13	1.378 (7)
1.343 (5)	C12—H12	0.9500
1.466 (6)	C13—C14	1.372 (6)
1.470 (5)	С13—Н13	0.9500
1.339 (5)	C14—C15	1.389 (6)
1.476 (5)	C14—H14	0.9500
1.477 (5)	C15—C16	1.496 (6)
1.349 (5)	C16—C17	1.387 (6)
1.334 (6)	C17—C18	1.386 (7)
1.333 (5)	С17—Н17	0.9500
1.341 (5)	C18—C19	1.375 (7)
1.509 (6)	C18—H18	0.9500
0.9900	C19—C20	1.386 (6)
0.9900	С19—Н19	0.9500
0.9900	C20—H20	0.9500
0.9900		
68.54 (12)	C4—C5—H5B	109.2
	2.361 (4) 2.395 (4) 2.6021 (14) 2.6310 (15) 2.7258 (15) 2.7586 (13) 1.727 (4) 1.715 (4) 1.715 (4) 1.717 (5) 1.423 (6) 0.840 1.428 (6) 0.839 1.426 (6) 0.840 1.418 (6) 0.839 1.343 (5) 1.466 (6) 1.470 (5) 1.339 (5) 1.476 (5) 1.377 (5) 1.349 (5) 1.349 (5) 1.334 (6) 1.333 (5) 1.341 (5) 1.509 (6) 0.9900 0.9900 0.9900 0.9900 68.54 (12)	2.361 (4) $C4-C5$ 2.395 (4) $C4-H4A$ 2.6021 (14) $C4-H4B$ 2.6021 (14) $C4-H4B$ 2.6310 (15) $C5-H5A$ 2.7258 (15) $C5-H5B$ 2.7586 (13) $C7-C8$ 1.727 (4) $C7-H7B$ 1.715 (4) $C7-H7B$ 1.737 (4) $C8-H8A$ 1.711 (5) $C8-H8B$ 1.423 (6) $C9-C10$ 0.840 $C9-H9A$ 1.428 (6) $C9-H9B$ 0.839 $C10-H10A$ 1.426 (6) $C11-C12$ 1.418 (6) $C11-H11$ 0.839 $C12-C13$ 1.343 (5) $C12-H12$ 1.466 (6) $C13-C14$ 1.470 (5) $C14-C15$ 1.476 (5) $C14-H14$ 1.477 (5) $C15-C16$ 1.339 (5) $C16-C17$ 1.334 (6) $C17-C18$ 1.333 (5) $C12-H17$ 1.334 (6) $C17-C18$ 1.333 (5) $C19-H19$ 0.9900 $C19-C20$ 0.9900 $C19-H19$ 0.9900 $C19-H12$

N4—Cd—S1	124.50 (9)	H5A—C5—H5B	107.9
N3—Cd—S1	89.45 (10)	N2—C6—S4	120.8 (3)
N4—Cd—S3	91.86 (9)	N2—C6—S3	119.9 (3)
N3—Cd—S3	125.71 (10)	S4—C6—S3	119.2 (2)
S1—Cd—S3	138.41 (4)	N2—C7—C8	114.0 (4)
N4—Cd—S4	130.40 (9)	N2—C7—H7A	108.7
N3—Cd—S4	87.33 (10)	С8—С7—Н7А	108.7
S1—Cd—S4	96.52 (4)	N2—C7—H7B	108.7
S3—Cd—S4	67.42 (4)	С8—С7—Н7В	108.7
N4—Cd—S2	88.63 (9)	H7A—C7—H7B	107.6
N3—Cd—S2	129.89 (10)	O3—C8—C7	113.6 (4)
S1—Cd—S2	67.09 (4)	O3—C8—H8A	108.9
S3—Cd—S2	97.79 (4)	С7—С8—Н8А	108.9
S4—Cd—S2	136.68 (4)	O3—C8—H8B	108.9
C1—S1—Cd	89.36 (15)	С7—С8—Н8В	108.9
C1—S2—Cd	84.55 (15)	H8A—C8—H8B	107.7
C6—S3—Cd	87.84 (15)	N2—C9—C10	115.8 (4)
C6—S4—Cd	85.31 (15)	N2—C9—H9A	108.3
C3—O1—H1O	111.9	С10—С9—Н9А	108.3
С5—О2—Н2О	113.2	N2—C9—H9B	108.3
С8—О3—НЗО	114.3	С10—С9—Н9В	108.3
C10—O4—H4O	113.0	Н9А—С9—Н9В	107.4
C1—N1—C4	122.5 (4)	O4—C10—C9	110.7 (4)
C1—N1—C2	121.8 (4)	O4—C10—H10A	109.5
C4—N1—C2	115.6 (4)	C9—C10—H10A	109.5
C6—N2—C9	120.8 (4)	O4—C10—H10B	109.5
C6—N2—C7	121.3 (4)	С9—С10—Н10В	109.5
C9—N2—C7	117.2 (3)	H10A-C10-H10B	108.1
C15—N3—C11	118.9 (4)	N3—C11—C12	122.7 (4)
C15—N3—Cd	118.6 (3)	N3—C11—H11	118.7
C11—N3—Cd	122.0 (3)	C12-C11-H11	118.7
C20—N4—C16	119.1 (4)	C11—C12—C13	118.5 (4)
C20—N4—Cd	120.3 (3)	C11—C12—H12	120.7
C16—N4—Cd	120.3 (3)	C13—C12—H12	120.7
N1—C1—S2	121.5 (3)	C12—C13—C14	119.5 (4)
N1—C1—S1	119.5 (3)	C12—C13—H13	120.2
S2—C1—S1	118.9 (2)	C14—C13—H13	120.2
N1—C2—C3	112.0 (4)	C15—C14—C13	119.2 (4)
N1—C2—H2A	109.2	C15—C14—H14	120.4
С3—С2—Н2А	109.2	C13—C14—H14	120.4
N1—C2—H2B	109.2	N3—C15—C14	121.1 (4)
C3—C2—H2B	109.2	N3—C15—C16	115.9 (4)
H2A—C2—H2B	107.9	C14—C15—C16	123.0 (4)
O1—C3—C2	106.8 (4)	N4—C16—C17	122.0 (4)
O1—C3—H3A	110.4	N4—C16—C15	115.8 (4)
С2—С3—НЗА	110.4	C17—C16—C15	122.2 (4)
O1—C3—H3B	110.4	C16—C17—C18	118.6 (4)
C2—C3—H3B	110.4	С16—С17—Н17	120.7
НЗА—СЗ—НЗВ	108.6	C18—C17—H17	120.7

N1—C4—C5	113.7 (4)	C19—C18—C17	119.1 (4)
N1—C4—H4A	108.8	C19—C18—H18	120.4
C5—C4—H4A	108.8	С17—С18—Н18	120.4
N1—C4—H4B	108.8	C20—C19—C18	119.1 (4)
C5—C4—H4B	108.8	С20—С19—Н19	120.5
H4A—C4—H4B	107.7	C18—C19—H19	120.5
O2—C5—C4	112.1 (4)	N4—C20—C19	122.1 (4)
O2—C5—H5A	109.2	N4—C20—H20	119.0
С4—С5—Н5А	109.2	C19—C20—H20	119.0
O2—C5—H5B	109.2		
N4—Cd—S1—C1	69.88 (17)	Cd—S1—C1—S2	2.3 (2)
N3—Cd—S1—C1	133.11 (16)	C1—N1—C2—C3	-86.6 (5)
S3—Cd—S1—C1	-76.60 (14)	C4—N1—C2—C3	90.1 (5)
S4—Cd—S1—C1	-139.64 (13)	N1—C2—C3—O1	177.9 (4)
S2—Cd—S1—C1	-1.34 (13)	C1—N1—C4—C5	-95.4 (5)
N4—Cd—S2—C1	-127.34 (16)	C2—N1—C4—C5	87.9 (5)
N3—Cd—S2—C1	-67.13 (18)	N1-C4-C5-O2	-67.0 (5)
S1—Cd—S2—C1	1.36 (13)	C9—N2—C6—S4	-3.3 (5)
S3—Cd—S2—C1	140.97 (14)	C7—N2—C6—S4	-173.7 (3)
S4—Cd—S2—C1	75.79 (14)	C9—N2—C6—S3	176.6 (3)
N4—Cd—S3—C6	136.19 (16)	C7—N2—C6—S3	6.2 (5)
N3—Cd—S3—C6	71.49 (18)	Cd—S4—C6—N2	-175.8 (3)
S1—Cd—S3—C6	-70.90 (15)	Cd—S4—C6—S3	4.3 (2)
S4—Cd—S3—C6	2.65 (14)	Cd—S3—C6—N2	175.6 (3)
S2—Cd—S3—C6	-134.94 (14)	Cd—S3—C6—S4	-4.5 (2)
N4—Cd—S4—C6	-74.77 (18)	C6—N2—C7—C8	-95.9 (5)
N3—Cd—S4—C6	-133.41 (17)	C9—N2—C7—C8	93.4 (5)
S1—Cd—S4—C6	137.46 (14)	N2—C7—C8—O3	-77.0 (5)
S3—Cd—S4—C6	-2.70 (14)	C6—N2—C9—C10	77.5 (5)
S2—Cd—S4—C6	74.19 (15)	C7—N2—C9—C10	-111.8 (4)
N4—Cd—N3—C15	4.5 (3)	N2-C9-C10-O4	67.7 (5)
S1—Cd—N3—C15	-123.2 (3)	C15—N3—C11—C12	0.4 (7)
S3—Cd—N3—C15	80.7 (3)	Cd—N3—C11—C12	-171.9 (4)
S4—Cd—N3—C15	140.2 (3)	N3-C11-C12-C13	0.7 (8)
S2—Cd—N3—C15	-64.3 (3)	C11—C12—C13—C14	-1.2 (7)
N4—Cd—N3—C11	176.8 (4)	C12-C13-C14-C15	0.6 (7)
S1—Cd—N3—C11	49.1 (4)	C11-N3-C15-C14	-0.9 (6)
S3—Cd—N3—C11	-107.0 (4)	Cd—N3—C15—C14	171.6 (3)
S4—Cd—N3—C11	-47.5 (4)	C11-N3-C15-C16	178.1 (4)
S2—Cd—N3—C11	108.1 (4)	Cd—N3—C15—C16	-9.3 (5)
N3—Cd—N4—C20	174.7 (3)	C13-C14-C15-N3	0.4 (7)
S1-Cd-N4-C20	-111.7 (3)	C13-C14-C15-C16	-178.6 (4)
S3—Cd—N4—C20	46.8 (3)	C20-N4-C16-C17	-1.7 (6)
S4—Cd—N4—C20	108.3 (3)	Cd—N4—C16—C17	171.7 (3)
S2-Cd-N4-C20	-51.0 (3)	C20—N4—C16—C15	-179.9 (4)
N3—Cd—N4—C16	1.4 (3)	Cd—N4—C16—C15	-6.4 (5)
S1—Cd—N4—C16	75.0 (3)	N3—C15—C16—N4	10.3 (5)
S3—Cd—N4—C16	-126.6 (3)	C14—C15—C16—N4	-170.7 (4)
S4—Cd—N4—C16	-65.0 (3)	N3—C15—C16—C17	-167.9 (4)

S2—Cd—N4—C16	135.7 (3)	C14—C15—C16—C17	11.2 (6)
C4—N1—C1—S2	1.5 (6)	N4-C16-C17-C18	0.1 (7)
C2—N1—C1—S2	178.0 (3)	C15-C16-C17-C18	178.1 (4)
C4—N1—C1—S1	179.5 (3)	C16—C17—C18—C19	0.8 (7)
C2—N1—C1—S1	-4.1 (5)	C17—C18—C19—C20	-0.1 (7)
Cd—S2—C1—N1	175.8 (3)	C16—N4—C20—C19	2.4 (6)
Cd—S2—C1—S1	-2.2 (2)	Cd—N4—C20—C19	-171.0 (3)
Cd—S1—C1—N1	-175.7 (3)	C18—C19—C20—N4	-1.5 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1—H1o S3 ⁱ	0.84	2.43	3.241 (4)	162
O2—H2o···O3 ⁱⁱ	0.84	1.89	2.723 (5)	176
O3—H3o…O4	0.84	1.87	2.688 (5)	166
O4—H4o···O2 ⁱ	0.84	1.91	2.745 (5)	174

Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y-1, z+1.

Fig. 1

